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Introduction

The dynamics of a chain hanging under its own weight is a classic
problem in mechanics. Two of the more interesting aspects of the
problem are the simultaneous presence of both high- and low-
tension regimes in the chain and the unstable nature of large am-
plitude motions. Triantafyllou and Howell (1993) and Howell and
Triantafyllou (1993) considered both of these phenomena using a
combination of analytic, numerical, and experimental results.
They observed that the stability of the response in a harmonically
driven system is strongly dependent on the frequency and ampli-
tude of the excitation.

The numerical model that they employed was based on a
finite-difference scheme known as the box method. This method
was first applied to a cable dynamics problem by Ablow and
Schechter (1983). Because the box method is an implicit scheme,
box method solutions for the classical cable dynamics equations
are singular when the tension goes to zero anywhere on the cable.
Howell and Triantafyllou (1993) removed this singularity by add-
ing bending stiffness to the governing equations, thus providing a
mechanism to propagate energy in the presence of zero tension
(Burgess 1993). For small values of artificial bending stiffness
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this modification stabilized the numerical solution with no loss of
accuracy compared to experimental results.

The box method is popular because it is second-order accurate
in both space and time and is relatively easy to implement. Be-
cause the box method preserves the frequency content of the so-
lution across all frequencies, however, it has the disadvantage of
relatively poor stability in its temporal discretization. In a nonlin-
ear problem, spurious high-frequency content can cause numeri-
cal instabilities, and thus, it is desirous that a temporal integration
scheme should be numerically dissipative at high frequencies.
Koh et al. (1999) addressed this shortcoming of the box method
by replacing the box method’s temporal integration scheme with
backward differences. They preserved the box method’s straight-
forward and easy to implement spatial discretization. Backward
differences have also been used by Chatjigeorgiou and Mavrakos
(1999) and Chiou and Leonard (1991) in conjunction with spatial
discretizations based on collocation and direct integration, respec-
tively. The scheme is only first-order accurate, but is very stable
because it has strong numerical dissipation at high frequencies.

Another temporal integration scheme that has been used in
cable dynamics applications is the generalized trapezoidal rule
(Sun et al. 1994). This scheme offers controllable numerical dis-
sipation, but is second-order accurate only in its least dissipative
form. Thomas (1993) compared three historically popular algo-
rithms from the structural dynamics community, Newmark,
Houbolt, and Wilson-6, for use in mooring dynamics problems.
His conclusion was that Houbolt was the best choice of the three.
Other authors, however, have noted that Houbolt has an undesir-
able amount of low-frequency dissipation (Chung and Hulbert
1994; Hughes 1987).

Tuming to the more recent structural dynamics literature,
Gobat and Grosenbaugh (2001) proposed replacing the box meth-
od’s temporal integration with the generalized-o method devel-
oped for the second-order structural dynamics problem by Chung
and Hulbert (1993). This algorithm has the advantages of control-
lable numerical dissipation, second-order accuracy, and straight-
forward adaptation to the first-order nonlinear cable dynamics
problem. Through appropriate choices of parameters, the method
can also reproduce the spectral properties of several other algo-
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rithms including the box method, backward differences, and trap-
ezoidal rule. This latter property makes it a particularly conve-
nient choice for the type of comparative study undertaken herein.
The analyses of the box and generalized-a methods from
Gobat and Grosenbaugh (2001) are summarized below. The per-
formance of the new algorithm is studied by comparison to ana-
Iytic and experimental results for the free and forced response of
the hanging chain. Throughout the analyses, comparisons are also
made to trapezoidal rule and backward difference solutions.

Analysis of Box Method

The governing equations for a cable or chain can be written as a
system of partial differential equations of the form (Howell 1992)

MaY KaY+FY =
5 TKoy (Y,s,t)=0 ¢}

where Y=vector of N-dependent variables, M and K
=coefficient matrices, and F=force vector. The independent
variables are s, the Lagrangian coordinate measuring length along
the unstretched cable, and ¢, time. Howell and Triantafyllou
(1993) used the box method to discretize Eq. (1). In the box
method the discrete equations are written using what look like
traditional backward differences in both space and time, but be-
cause the discretization is applied on the half-grid points with
spatial and temporal averaging of adjacent grid points, the method
is second-order accurate. The result is a four-point average cen-
tered around the half-grid point.

The stability of the box method can be analyzed by consider-
ing an equivalent linear, single degree-of-freedom system in se-
midiscrete form. This approach separates the spatial and temporal
discretizations into distinct procedures. For each of the n—1 spa-
tial half-grid points between the n nodes a set of N discrete equa-
tions is assembled. Combining these N(n—1) equations with N
equations describing the boundary conditions yields the semidis-
crete equation of motion for all of the dependent variables at all
of the nodes as (Gobat and Grosenbaugh 2001)

MY+KY+F=0 )

The tilde over the matrices signifies that these are now dis-
cretized, assembled quantities. The single degree-of-freedom, lin-
ear, homogeneous analog of Eq. (2) is

y+toy=0 3)

Applying the box method’s temporal discretization to Eq. (3)
yields

y+y T+ o(yi+y~1)=0 “
where
o yi—yi-l
i ui—l—n| 2
yity 2( A7 ) &)
Rearranging Eq. (5) gives the recursion relationships
i yi=1
I AN A S
y —2( A7 ) y (6)
L Ar i1
yi=g (Y T+ Q)

Substituting each of the recursion relationships separately into Eq.
(4), we can write equations for y* and y' in matrix form as
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2—-wAt 0

yi 2+ wAt yi_l

[yl}= —4 [yi—l} (8)
2+ wAt -1

The 2 X2 matrix on the right-hand side of Eq. (8) is the am-
plification matrix. Spectral radius p of this matrix, defined as

p=max(|\|,I\2]) ®

governs the growth or decay of the solution from one time step to
the next (Hughes 1987). A, ,=eigenvalues of the amplification
matrix. For p=<1, the solution will remain steady or decay and is
said to be stable. For p>1, the solution will grow and is said to
be unstable. For the box method,

2—wAt 10
)\1—2+wAt (10)
N=—1 (11)

and the spectral radius is unity (and the scheme is stable) for all
values of w and At.

In spite of this unconditional stability, however, the box
method has three significant problems. The first problem is illus-
trated by considering the update equation for y® written in the
form

. 2—wAt) -1 1
Y=\27eht)” 12

As wAt goes to infinity this becomes
yl=—y! (13)

This is the phenomenon known as Crank-Nicholson noise,
whereby the high-frequency components of the solution oscillate
with every time step. A second, related, problem is that the spec-
tral radius is constant at unity. An artifact of the spatial discreti-
zation process is that at some point the high-frequency (or equiva-
lently, high-spatial wave-number) components of the solution are
not well resolved and the numerical solution is inaccurate. For
this reason it is desirous to have numerical dissipation in a
scheme such that the spectral radius is less than unity for increas-
ing values of wA¢. The box method has no numerical dissipation.
Finally, Hughes (1977) cites a problem with averaging schemes in
general as applied to nonlinear problems. For the nonlinear single
degree-of-freedom case, Eq. (4) can be written as

yi+yi—l+miyi+wi—1yi-l=0 (]4)

The update equation for y', Eq. (12), becomes
; 2-0'lAL 5
Y=\ 2% elar ) as

and the stability becomes conditional as parameter w changes
with time. The practice suggested by Hughes (1977) for avoiding
this problem is to use an averaged value of w, i.e.,

ig il

y"‘+y'“1+(—5—)(y"+y"‘l)=0 16)

Generalized-a Method

Given the stability problems associated with the box method,
Gobat and Grosenbaugh (2001) proposed replacing the temporal
integration with Chung and Hulbert’s (1993) generalized-a



Table 1. Algorithms Included in Generalized-o. Method

Algorithm vy oy oy 1st order problem 2nd order problem
Box method % % % Ablow and Schechter (1983)

Backward differences 1 0 0 Koh et al. (1999)

Generalized trapezoidal [3.1] 0 0 Sun et al. (1994) Newmark (1959)
Cornwell and Malkus ;——a a 0 Cornwell and Malkus (1992) Hilber et al. (1977)
WBZ-a ita 0 a Wood et al. (1981)

method. The generalized-a method is a reasonably complete fam-
ily of algorithms that is second-order accurate, has controllabie
numerical dissipation, and offers a clear approach to coefficient
averaging for the nonlinear problem. Following Chung and Hul-
bert’s development of the generalized-o method for second-order
equations, semidiscrete Eq. (2) becomes

(1=, ) MY+ a,, MY~ 1+ (1-a,)KYi+a,KY~!

+(1-o)F+o, F1=0 (17)

The difference equation is the same as for the generalized trap-
ezoidal rule (Hughes 1987),

Y=Y "1+ A (1-y)Y~ 1+ yY] (18)

The three parameter family of algorithms given by Egs. (17) and
(18) defines the generalized-o method for the first-order semidis-
crete problem. The method is second-order accurate if

19)

From the eigenvalues of the amplification matrix, the stability
requirement is

=1
am_ak+‘y— 2

(20)

Requiring second-order accuracy according to Eq. (19) and forc-
ing the eigenvalues of the amplification matrix to be equal as
wAz— to prevent bifurcation, yields formulas for o, and «,, as
a function of A\* only

3A"+1
Om=oNE=2

)\co
e oy 2D
This yields a second-order accurate algorithm in which the only
parameter is the eigenvalue (or spectral radius) at infinity.

Algorithms that can be obtained through various choices of
oy, a,,~, and A are listed in Table 1. Spectral radii of some of
these algorithms are shown in Fig. 1. Note that taking A~
€[0,1) as the basis for the spectral radius results in a different set
of algorithms than A* €[ —1,0]. For p®”=1 the only option is the
negative eigenvalue and this results in the box method. A nondis-
sipative algorithm with A= +1 cannot be achieved.

In applying the generalized-a method to the nonlinear problem
we must choose the time point at which we will evaluate M, K,
and F. A natural choice, consistent with the practice suggested by
Hughes (1977) for nonlinear first-order problems and exemplified
by Eq. (16), is provided by the temporal averaging of terms that is
already a part of the method. At time step i Eq. (17) becomes

1 _0 5 3 )‘-Lz =-1
0.9
0.8
M 22078 ) !
1 kB 1 i
= 0.7 ; Xz=-011,-068_ B
206
g k
= 05+
©
:
&} -
Q 0.4
Q
03k, N S\ T T
' B—=£1box method (,=0.5, ¢,=0.5, y=0.5)
————— trapezoidal rule (,=0.0, & =0.0, y=0.5) o .'l
0 2 | -omeememees backward difference (,=0.0, ,=0.0, y=1.0) L\ 1%
. — — - HHT(CM)-« (%,=0.25, &, =0.0, y=0.75) AN
b — - — HHT(CM)-a (0,=0.1, &, =0.0, =0.6) V!
0 1 L p.=0.0 (=0.0, &,=-0.5,y=1.0) v !
. G——6p_ =025 (0,=-0.33, o, =-1.17, y=1.33) v
+ +———+p_=0.75 (,=-3.0, a,=-6.5, y=4) v T
g e -
0.0 NPT R NS L] . Ll Zingee- A,,=00
- -3 -2 -1 0 1 2 3
10 10 10 10 10 10 10
' -At

Fig. 1. Spectral radii of generalized-a family algorithms
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(1= ) FE=on¥ i o, M=oY 4 (1 — ) R Y

+o, KoY 1+ (1 —a ) F+ o, F =0 (22)

where the averaged coefficient matrices are defined as
Mi=en=(1-0a,)M+a,M ! (23)
Kimu=(1-a)Ki+a,K! (24)

This scheme has been implemented in a computer program for
two- and three-dimensional simulations of cable dynamics (Gobat
and Grosenbaugh 2000). At each time step, Eq. (22) is solved
using a Newton—Raphson procedure. The solution from the pre-
vious time step (or the static solution at the initial time step)
serves as the initial guess in the nonlinear iterations. Because of
this, the ultimate success of the solution is dependent on both the
stability of the time integration and on the ability of the nonlinear
solver to converge on a solution at time step i given an initial
guess based on the solution at time step i — 1. To improve conver-
gence the program implements an adaptive time stepping scheme
whereby the time step (the distance between the guess at i —1 and
the solution at i) is reduced by factors of 10 at any spots where
the solver is not successful. A practical limit of four orders of
magnitude below the base-line time step is set to prevent the
solution from proceeding in the face of a physical or numerical
instability unrelated to the nonlinear solution procedure (e.g.,
Crank—Nicholson noise).

All of the numerical solutions that follow were obtained using
this program. Thus, the box method, trapezoidal rule, and back-
ward difference results, while spectrally equivalent to previous
implementations, may be more stable than previous solutions be-
cause of the coefficient averaging scheme in Eq. (22). For clarity,
spectrally equivalent historical names are retained in discussions
of comparative algorithm performance that follow.

Application to Hanging Chain Problem

The performance of the different algorithms that can be imple-
mented with the generalized-o family is studied by considering
the free and forced response of the hanging chain shown in Fig. 2.
In the free-response problem, we apply a small initial displace-
ment to the chain and then at time =0, release it. The dynamic
response of the chain for >0 can be calculated analytically for
the small motions that result. In the forced response problem we
impose a sinusoidally varying horizontal displacement to the top
of the chain and analyze the forced response. This latter problem
was studied both numerically and experimentally by Howell and
Triantafyllou (1993).

Free Response to Initial Displacement
For small motions and an inextensible chain, the equation of mo-
tion is

82 3 F
q [ q} )

where m=mass per length of the chain, g =transverse displace-
ment of the chain, g=acceleration due to gravity, and s
=independent coordinate along the chain with s=0 at the free
end. Assuming a harmonic solution of the form

q(s,t)=q(s)[A cos wt+B sin wt] (26)
the mode shapes; g(s), are (Triantafyllou et al. 1986)
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Fig. 2. Definitions for hanging chains problems

N N

where J, and Y,=zero-order Bessel functions of the first and
second kind, respectively. The requirement that the solution be
finite at s=0 leads to the elimination of the Y, term and the
requirement that g(L)=0 leads to the natural frequencies, .
They are given by the roots of

L
Jo| 205 =0 (28)

The complete response is given as the sum of the response in all
modes:

q(s)=c1Jg

k= ’ S\
q(s,0)= 2 JO( 2w, \/;) [A,coswt+B,sinwz] (29)
n=1 \
The coefficients A, and B, are determined from the initial

displacement, go(s), and velocity, go(s). Given go(s)=0, we can
immediately determine that B, = 0. To determine A, we first write

26:.0=3 A,,Jo(zwn \/g) =4o(s) (30)

Multiplying both sides by Jo(2w,Vs/g), integrating from s=0 to
s=L, and making use of the fact that

L s s
f]o<2w,,\/; 10(2(»,,,\/;)ds=0 for n¥m (31)

0
yields the following equation for A,

L S
f go(s)Jo| 2w, \/ —]ds
0 g
L S
f T3\ 20, \/ —|ds
0 g

A,=

(32)
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The analytic solution was computed for a chain released from
an initial catenary configuration. For simplicity all of the model
parameters (mass per length, gravity, length) were set to unity.
The horizontal force applied at s =0 to create the initial defiection
was set to 0.001 N. All of the integrals for the analytic solution
were computed using the trapezoidal rule with 10,000 panels. A
400 s time series of the response at the free end was constructed
using the first 20 modes of the analytic solution. The analytic
result was sampled at 20 Hz to adequately capture the response up
to mode 20. (The natural frequency for mode 20 is approxi-

Trapezoidal: n=100,At = 0.01

Trapezoidal: n=200,At = 0.01

mately 5 Hz.)

Analytic solutions were compared to numerical simulation re-
sults for a chain released from the same initial configuration. For
simulation results EI was set to 10™% Nm? and EA to 10° N. This
setting for EI corresponds to the value of EI*=EI/mgL* used in
Howell’s (1992) comparison of experimental and simulation re-
sults and in the simulations of the forced hanging chain problem
that follow. The results from Howell demonstrated that this value
is sufficient to stabilize the numerical solution in the presence of
zero tension, but is small enough as to have a negligible effect on
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Fig. 8. Snapshots of chain configuration near time of expected intersection for trapezoidal rule with different spatial and temporal discretizations
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the accuracy of the simulation result (based on comparisons with
experiment). The model results were insensitive to changes in this
value of at least an order of magnitude.

Because the primary distinction among the various algorithms
contained within the generalized-a family is the amount of nu-
merical dissipation, all results are compared in the frequency do-
main. For each 400 s time series, power spectra of the response at
the free end were computed using nonoverlapping 256 point fast
Fourier transforms. For clarity, only the peaks of the spectra are
plotted. This prevents clutter and allows for a comparison of the
spectral roll off of each of the algorithms compared to the roll off
from the analytic solution.

Fig. 3 shows a comparison between the analytic solution and
numerical solutions for six different parametrizations of the
generalized-a method. At this time step, Az=0.01 s, most of the
algorithms are accurate out to the fifth or sixth mode. The notable
exception is the first-order accurate backward difference solution,
which substantially underestimates the response even in the first
mode. All of the algorithms show a marked fall off from the
analytic solution at higher frequencies, with the solutions for A*
=0 showing the most decay and the trapezoidal rule appearing to
be the most accurate.

In Fig. 1, the numerical damping of most algorithms increases
with increasing wAt. The idea that we should see less numerical
damping at a fixed frequency with a decrease in At is illustrated
in Fig. 4, which shows the same results comparison as in Fig. 3
for a time step of Az=0.001 s. At this time step most algorithms
are accurate out to the tenth mode. Only backward differences,
which due to its first-order accuracy is again a poor solution even
at very low frequencies, and A”=0 are worse than this.

That the other algorithms, with their varying levels of dissipa-
tion, have converged to the same solution suggests that the re-
maining error is not due to numerical dissipation. Fig. 5 shows the
comparison for four cases with A\®=— 1 and Ar=0.001 s, with a
varying number of nodes. As the node density is increased, the
numerical model is better able to resolve the mode shapes asso-
ciated with the higher frequencies. At n=_800, the numerical so-
lution is in agreement with the analytic solution over the full
range of the analytically computed response.

These results demonstrate that the ability of the model to ac-
curately resolve high-frequency response is dependent on tempo-
ral and spatial discretizations and on the numerical dissipation for
a given algorithm. Given sufficient temporal and spatial resolu-
tion, most of the algorithms appear ultimately capable of accu-
rately calculating the free response of the swinging chain. Based
on its better accuracy at the larger time step, the best choice of
algorithm for this problem appears to be the trapezoidal rule.

Two-Dimensional Forced Response to Imposed
Motion

The forced hanging chain problem that we consider was studied
by Howell and Triantafyllou (1993). In this problem, a 1.75-m-
long chain is suspended from an actuator which imposes a sinu-
soidally varying horizontal linear displacement, Q(?), to the top
of the chain (Fig. 2). In experiments, Howell and Triantafyllou
observed that the free end of the chain intersects the chain above
it at approximately 3.4 s.

Fig. 6 shows the configuration of the lower portion of the
chain from 3.43 to 3.46 s for six different numerical algorithms,
all with n=100 and Ar=0.01 s. The box method and trapezoidal
rule both closely match the experimental result, with intersection
occurring by the 3.43 s mark. For the other algorithms the inter-
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section occurs later; the delay in the time of intersection is pro-
portional to the amount of numerical dissipation in the algorithm.
The backward differences solution is again the worst; the chain
never intersects itself. Likewise for A* =0, though it comes closer
to doing so. For A”= —0.7, intersection actually happens at 3.47
s and for A" =~0.5, at 3.50 s.

The situation changes somewhat if we consider the effect of
temporal and spatial discretization. Fig. 7 shows the same time
points for versions of the box method with »=100 or 200 and
At=0.01, 0.001, and 0.0001 s. In this case we see that increasing
the number of nodes does not significantly affect the solution,
suggesting that n=100 is adequate to accurately capture the re-
sponse. An increase in temporal resolution, however, from At
=0.01s to Az=0.001 s, leads to a delay in the crossover to ap-
proximately 3.46 s. The result at the even smaller Ar=0.0001 s
confirms that the solution has converged at these smaller time
steps. Fig. 8 shows this same behavior for the trapezoidal rule.
The only notable difference between trapezoidal rule and box
method solutions is the better smoothness of the trapezoidal rule
solutions at Ar=0.01s.

Similar results for A= —0.5 are shown in Fig. 9. In this case,
the solution at Ar=0.001 s is slightly different than the solutions
from the trapezoidal rule and the box method at the 3.46 s point.
The solutions for A¢=0.0001 s are in good agreement with the
converged solutions for Az=0.001 s in Figs. 7 and 8. A notable
difference in the solutions for the various algorithms does appear
between 3.5 and 4.0 s (i.e., following crossover). Both trapezoidal
rule and box method solutions required significant adaptation of
the time step to get through the collapse of the lower portion of
the chain following the crossover. The enhanced stability of solu-
tions with A*= —0.5 allowed for a smooth numerical solution in
this region, with no or very little adaptation. Without experimen-
tal verification, however, we cannot say if the A”= —0.5 solution
is accurate.

At sufficiently small time steps and adequate spatial resolu-
tion, all three algorithms: box method, trapezoidal rule, and A™
= —0.5, provide accurate solutions. Trapezoidal rule is the best
choice in terms of the computational cost of accuracy, where cost
is measured in terms of time step. As indicated, however, in re-
gions where the solution becomes numerically unstable some nu-
merical dissipation may be necessary to obtain a solution. This
suggests a trade off between optimizing the time step for accuracy
and optimizing the algorithm for stability.

Three-Dimensional Forced Response to Imposed
Motion

In order to further explore these trade offs, three-dimensional
simulations were conducted to explore the behavior of the solu-
tions beyond the time when the chain crosses over itself. Howell
(1992) noted that out-of-plane motions of the experimental chain

- only become significant after this point. The simulations were

conducted with a small initial out-of-plane force applied at the
free end to promote the initiation of out-of-plane motion. This
models the inevitable presence of small disturbing forces that
produce instabilities in the two-dimensional motion and eventu-
ally lead to a fully three-dimensional (3D) response.

Table 2 lists the observed time of the chain crossing over itself
and the total running time (out of a possible 10 s simulation) of
the simulation before failure. Only solutions for —0.4=<\"<
—0.2 ran for the full 10 s and resulted in an accurate crossover
prediction. At At=0.01s, the numerically stable solutions (at
A*=—-0.3 and A*=-0.2) were less accurate than the two-
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Fig. 9. Snapshots of chain configuration near time of expected intersection for A®=— 1 with different spatial and temporal discretizations

Table 2. Crossover Time and Total Runtime in Three-Dimensional Simulations

At=001s Ar=0.001s
Method Crossover (s) Run Length (s) Crossover (s) Run Length (s)
Box 3.38 345 3.64
Trapezoidal 341 3.78 345 3.60
A®=-0.7 .- 3.40 340
A"=-05 3.42 340
A*=-04 3.49 3.56 3.46 10.0
A"=-03 3.51 10.0 3.46 10.0
A ==02 3.52 10.0 347 10.0
A®=—0.1 3.60 3.40
A"=0.0 10.0 342
A®=0.1 10.0 342
At=001s At=0.001s
0.2 0.2
0.1 0.1
E o E o
> >
-0.1 -0.1t
2" =-0.3 A" =-03
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Fig. 10. Out-of-plane motion of free end of hanging chain for A*=—0.3 and A"=—0.2 and Ar=0.01 s and Ar=0.001s
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Fig. 11. Trace of horizontal motions of free end of hanging chain for A®=—0.3 and Ar=0.001 s

dimensional simulations for A= —0.5 at this same time step.
This is consistent with the observation that as damping increases
the crossover time is delayed. Also consistent with the two-
dimensional results is the convergence to a prediction of 3.46 s
with an increase in temporal resolution to Az=0.001 s.

The numerical stability of results for A*=0.0 and A"=0.1 at
At=0.01s, but not at Az=0.001 s, illustrates the dependence of
the stability on the frequency content of the response, the time
step, and the damping properties of the algorithm. Because the
spectral radii in Fig. 1 all initially decrease with the product wAz,
a decrease in Ar at a fixed frequency will result in less damping.
If the response at that frequency was responsible for the instabil-
ity then the solution at the smaller time step may actually be less
stable.

Fig. 10 shows the out-of-plane motion of the free end of the
chain for the algorithms that ran for the full 10 s at both Ar
=0.01 s and Az=0.001 s. At Ar=0.01 s there is little consistency
between the levels of out-of-plane motion predicted by the differ-
ent algorithms. For the solutions at Ar=0.001 s the results for
out-of-plane response appear roughly equivalent. A trace of the
motion of the free end in the horizontal plane for Ar=0.001 s and
A®=—0.3 is shown in Fig. 11. The roughly circular whirling
motion revealed by the trace after the three-dimensional motion is
fully developed as expected for this problem (Nayfeh and Mook
1995).

Conclusions

The stability properties of the box, backward difference, trapezoi-
dal rule, and generalized-a temporal integration algorithms were
studied. The box method is popular in cable dynamics applica-
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tions because it is second-order accurate and easy to implement.
In the harmonically driven hanging chain problem considered
above, however, its poor numerical stability made solutions diffi-
cult or impossible to obtain beyond a certain point in time.

Backward differences have excellent numerical dissipation
(and thus very good stability), but are only first-order accurate.
For the hanging chain problem this poor accuracy leads to nu-
merical solutions that compared poorly with both analytic and
experimental results. Unlike in the experiment, the simulated
chain never crossed over itself. Trapezoidal rule solutions showed
good accuracy, but because of their weak numerical dissipation,
relatively poor stability in the forced response problem. Of the
three algorithms that have been popularly employed in cable dy-
namics problems (box, backward differences, trapezoidal rule) the
trapezoidal rule appears to be the best choice.

Of all the algorithms considered, the generalized-o algorithm
had the best combination of accuracy and stability. For the har-
monically driven chain it was the only algorithm that produced a
simulation of the three-dimensional whirling motion that develops
after crossover occurs. While it is slightly more complicated to
program, it has the advantage that once it is implemented, box,
backward difference, and trapezoidal rule solutions can easily be
obtained through proper choice of the parameter values. The best
choice for A” is problem dependent, but —0.5<A"<-0.2 ap-
pears to be a useful range for many problems. Care must still be
taken to insure adequate spatial and temporal discretizations so
that the important frequency content of the solution is preserved.
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